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Abstract

Vibration analysis of a gossamer or inflated structure poses special problems, usually not encountered in
a conventional metallic or composite structure. In an inflated structure, internal pressure is a major source
of strength and rigidity. In the past, most of the studies conducted on the vibration analysis of gossamer
structures used inaccurate or approximate theories in modelling the internal pressure. The inexactness in
these theories arises due to (1) exclusion of the follower pressure loads, and (2) approximations in the
geometric non-linearity. Taking cues from the earlier work done in this area and using line-of-curvature co-
ordinates, we re-derive the governing equations for vibration analysis of a shell under pressure, and point
out the shortcomings of the previous approximate theories. The same governing equations were derived
earlier by Budiansky using tensors. Thereafter, a free-vibration analysis of an inflated torus with free
boundary condition is performed using the accurate and the approximate shell theories. It can be seen that
the natural frequencies and the mode shapes obtained from the approximate theories are significantly
different from those obtained from the accurate shell theory. Since the boundary condition of the torus is
free, the vibration analysis should yield six zero frequencies corresponding to the six rigid-body modes. It is
shown here that while the accurate theory does give six zero frequencies, the approximate theories do not.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Gossamer structures, also known as inflatables, possess special properties such as lightweight,
minimal stowage volume, and high strength-to-mass ratio. These remarkable properties make
them suitable for cost-effective large space antennas, which provide high resolutions and large
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frequency bandwidths. Given the very small wall-thickness, a gossamer structure can be modelled
as a shell under pressure. A literature survey on this subject suggests that there have been a very
few studies on the vibration analysis of inflatables. Moreover, several of these studies suffer from
some serious problems in the ways the effects of pressure have been handled. There are two main
effects of pressure.
(1) Prestress effect: Pressure induces a prestress field in the structure, which changes the load-

bearing capability, or the effective stiffness, of the structure. This effect can be modelled by
calculating the prestresses (also called the initial stresses) using the static equations, and then
incorporating them into the dynamic equations of motion. Coupling of the prestresses and the
dynamic equations of motion can be achieved using geometric non-linearity.
(2) Follower load effect: Apart from the prestress effects, the internal pressure also produces the

so-called follower load, which arises because the pressure tends to act normal to the deflected
surface. The stiffness created by this deflection-dependent force also changes the effective stiffness
of the structure.
While a correct shell theory was derived in a previous study using tensors [2], it was not

properly applied in several studies regarding the vibration analysis of an inflated structure. In this
study, we re-derive these equations for a shell under pressure using the line-of-curvature co-
ordinates, and point out the shortcomings of the previous approximate theories. The two effects
of pressure were correctly modelled in the dynamic analyses of an inflated torus by Liepins [1] who
used the shell theory presented by Budiansky [2], and by Leigh et al. [3] who used finite element code
MSC/NASTRAN. Other research work in this area used approximate geometric non-linearities,
and ignored altogether the follower force while analyzing an inflated structure (e.g. Refs. [4,5]). In
the finite element analysis of Lewis [6], we found that while the prestress effect was properly
included, the follower load of the pressure was not. In this paper, we show that these anomalies
cause considerable differences in the natural frequencies and mode shapes of an inflated torus.
We follow Sanders’ shell theory because of its consistency and good accuracy [7]. First, we

derive non-linear strain–displacement relations. Thereafter, we present the basics of Sanders’ shell
theory for a shell without any pressure load. This shell theory is then modified to include the
effects of pressure. To this end, we calculate the strain energy due to prestresses, and the work
done by the internal pressure. The variations of the additional strain energy and the work are used
in deriving Sanders’ shell theory for a shell under pressure. After that, we outline the approximate
theories as presented before by other researchers. In order to show the effect of these inaccuracies,
we compare the natural frequencies and mode shapes of an inflated torus obtained using different
shell theories.

2. Non-linear strain–displacement relations

In order to include the prestress effects of the pressure in the dynamics of an inflatable
structure, it is important to use a non-linear strain–displacement relation with the prestresses.
Using geometric non-linearity with only the prestresses also maintains the proper homogeneity in
the order of the equations, and keeps the resulting equations linear. In this section, we derive non-
linear strain–displacement relations from three-dimensional elasticity theory. These relations are
later used in deriving the expressions for the strain energy density function.
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A shell is defined by a reference surface, thickness of the reference surface, and its edges. Let a1;
a2; and z be the curvilinear co-ordinates system associated with a shell element (Fig. 1). The
reference surface, which defines the shape of a shell, is described by two Lam!e parameters, A1 and
A2; and two principal radii of curvatures, R1 and R2: In order to define a valid surface, these
quantities must satisfy the following three differential equations, known as Gauss–Codazzi
conditions [8]:
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Let eij denote the strains, where i; j ¼ 1; 2; 3: The symmetry of the three-dimensional elastic
strains implies that eij ¼ eji: The engineering shear strains (g12; g13 and g23) are defined as twice of
corresponding tensor shear strains (e12; e13; and e23). The strain–displacement relations for any
three-dimensional elastic body in an orthogonal co-ordinate system can be given by [9,10]:

e11 ¼ e11 þ 1
2
ðe211 þ e221 þ e231Þ; e22 ¼ e22 þ 1

2
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Fig. 1. Shell reference surface with the co-ordinate system.
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and where U1ða1; a2; z; tÞ; U2ða1; a2; z; tÞ; and W ða1; a2; z; tÞ are the displacements, and H1; H2; and
H3 are the Lam!e coefficients of the elastic body along the co-ordinate lines a1; a2; and z;
respectively. For a thin shell, the Lam!e coefficients H1; H2; and H3 are given by

H1 ¼ A1ð1þ z=R1Þ; H2 ¼ A2ð1þ z=R2Þ; H3 ¼ 1: ð10Þ

Using the above equation and Gauss–Codazzi conditions, one can evaluate the Eqs. (6)–(9) as
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From Love’s first approximation, the displacement field can be represented linearly, i.e.,

U1ða1; a2; z; tÞ ¼ u1ða1; a2; tÞ þ zb1ða1; a2; tÞ; ð16Þ

U2ða1; a2; z; tÞ ¼ u2ða1; a2; tÞ þ zb2ða1; a2; tÞ; ð17Þ

W ða1; a2; z; tÞ ¼ wða1; a2; tÞ; ð18Þ

where u1ða1; a2; tÞ; u2ða1; a2; tÞ; and wða1; a2; tÞ are the mid-surface displacements in a1; a2; and z
directions, respectively. The symbols b1ða1; a2; tÞ and b2ða1; a2; tÞ represent the rotations of
tangents of the middle surface oriented along a1 and a2 directions, respectively. These rotations
can be obtained using Love’s first approximation as [8]
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Substituting the displacement fields in Eqs. (11)–(15) yields the following relations [10]:

e11 ¼ e01 þ zk1; e22 ¼ e02 þ zk2; e33 ¼ 0; ð20Þ

e21 ¼ e03 þ zk3; e12 ¼ e04 þ zk4; e13 ¼ b1; ð21Þ

e31 ¼ e05 þ zk5; e32 ¼ e06 þ zk6; e23 ¼ b2; ð22Þ
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Now we substitute Eqs. (20)–(22) in Eqs. (3)–(5), and neglect the terms having z2: The remaining
part can be separated into two groups based upon dependency on z: The group of terms that does
not contain z represents the changes in lengths of the shell element. The other group represents the
changes in the curvatures and the torsion of the reference surface. The following equations
summarize the results:

e11 ¼ et
1 þ zkt

1; e22 ¼ et
2 þ zkt

2; g12 ¼ gt
12 þ zkt

12; ð28Þ

where
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kt
2 ¼ k2 þ e02k2 þ e04k4 þ e06k6; ð31Þ

kt
12 ¼ k3 þ k4 þ k1e04 þ e01k4 þ k2e03 þ e02k3 þ k5e06 þ e05k6: ð32Þ

The non-linear terms in the strains e33; g13; and g23 are neglected, as they are very small (zero from
Love’s first approximation). The superscript t in the above equation denotes the total quantity,
i.e., summation of both linear and non-linear terms. Since the wall thickness of an inflatable
structure is usually very small (a few mm), the prestresses are assumed to be of membrane-type,
i.e., uniform throughout the thickness. Therefore, it is sufficient to retain only linear terms in the
expressions of changes in curvature and torsion. This implies

kt
1 ¼ k1; kt

2 ¼ k2; kt
12 ¼ k3 þ k4: ð33Þ

In order to satisfy the ‘‘sixth equilibrium equation’’ and the zero strains in small rigid body
motions, Sanders [7] defined a new quantity bn that represents the rotation about the normal to
the reference surface, given by

bn ¼
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Using the rotation bn; a few new strain quantities are defined as

es
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; ð35Þ
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Expanding the above quantities, and neglecting z=R1 and z=R2 with respect to 1, we get [7]
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Using the new definition of strains and again neglecting z=R1 and z=R2 in comparison with 1, we
get the in-plane strains as
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3 þ 2es
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We use the above strain–displacement relations in order to obtain the strain energy density
function for a shell under prestresses.

3. Governing equations for a shell without pressure

In this section, we present Sanders’ shell theory [7]. In the next section, we derive the necessary
modifications in this theory due to the internal pressure. Let N11; N22; N12; N21 be the in-plane
stress resultants (Fig. 2) and M11; M22; M12; M21 be the bending and twisting moment
resultants (Fig. 3). The surface traction forces per unit area along the co-ordinates a1; a2; and z are
denoted by q1; q2; and q3; respectively. The transverse shear stress resultants are replaced by the
equivalent expressions in the equilibrium equations. The modified membrane shear stress
resultant ð *N12Þ; modified twisting moment resultants ð *M12Þ; and the modified twisting strain ð *k12Þ
are defined as [7]

*N12 ¼ 1
2
ðN12 þ N21Þ; *M12 ¼ 1

2
ðM12 þ M21Þ; *k12 ¼ 1

2
ðks

3 þ ks
4Þ: ð42Þ

ARTICLE IN PRESS

A.K. Jha, D.J. Inman / Journal of Sound and Vibration 278 (2004) 207–231212



3.1. Equilibrium equations

The equilibrium equations for a shell without any pressure load are given by the following three
equations [7]:
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where r is the density, and h is the wall thickness of the shell. In order to solve the above
equilibrium equations, it needs to be expressed in terms of the three mid-surface displacements
using the constitutive laws and the strain–displacement relations.

3.2. Constitutive law

The material is assumed to be elastic and isotropic. The constitutive laws, which relate the stress
and strain measures, are given by the following equations [7]:

N11 ¼ Kðe01 þ ne02Þ; N22 ¼ Kðe02 þ ne01Þ; *N12 ¼
Kð1� nÞ

2
ðe03 þ e04Þ; ð46Þ

M11 ¼ Dðk1 þ nk2Þ; M22 ¼ Dðk2 þ nk1Þ; *M12 ¼ Dð1� nÞ *k12; ð47Þ

where n is the Poisson ratio, K is the membrane stiffness, and D is the bending stiffness. The
constants K and D can be written in terms of the Young’s modulus ðEÞ; the Poisson ratio ðnÞ; and
thickness ðhÞ of the shell as

K ¼
Eh

1� n2
; D ¼

Eh3

12ð1� n2Þ
: ð48Þ

We assume that the structural properties of the shell are uniform throughout.

3.3. Boundary conditions

The four boundary conditions at the edge with constant a1 are as follows [7]:

N11 ¼ %N11 or u1 ¼ %u1; ð49Þ
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@ %M12

@a2
or w ¼ %w; ð51Þ

M11 ¼ %M11 or b1 ¼ %b1: ð52Þ

where the quantities with over bar are specified ones. Expression for the boundary conditions at
the edge of constant a2 can be obtained by interchanging 1 and 2 in the above equations.
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4. Governing equations for a shell subjected to pressure

Since we assumed the initial stresses to be of membrane type, the prestresses sr
33; s

r
32; s

r
32; s

r
31;

and sr
13; related to the transverse direction, are assumed negligible. The material is

assumed to follow Hooke’s Law. Since prestresses sr
ij are constant in time, and the

vibratory stresses sij are proportional to eij ; the strain energy density function can be given by
(Fig. 4, Ref. [11])

P ¼ 1
2
ðs11e11 þ s22e22 þ s33e33 þ s23e23 þ s32e32 þ s31e31 þ s13e13
þ s12e12 þ s21e21Þ þ ðsr

11e11 þ sr
12e12 þ sr

21e21 þ sr
22e22Þ: ð53Þ

The terms in the second bracket are the additional terms due to the prestresses. According to
Love’s first approximation, e33 and s33 are negligibly small, which leads to dropping the
terms corresponding to e33 in Eq. (53). Though from Love’s first approximation dg23 and dg13
are also zero, they are not dropped from the strain energy expression in order keep the
non-zero transverse shear stresses (s13; s23) in the governing equations. Now, using symmetry of
stress and strain tensors, and the definitions of the engineering strains, one can write the above
equation as

P ¼ 1
2
ðs11e11 þ s22e22 þ s23g23 þ s13g13 þ s12g12Þ

þ ðsr
11e11 þ sr

12g12 þ sr
22e22Þ: ð54Þ

We concentrate only on the terms in the second bracket of the above equation, which are due to
the prestresses. This leads to the following expression for the variation of additional strain energy
due to the prestresses:

dDUE ¼
Z

V

ðsr
11de11 þ sr

22de22 þ sr
12dg12Þ dV : ð55Þ
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The above equation contains the three-dimensional strains, which are next written in terms of
two-dimensional strains as

dDUE ¼
Z

V

sr
11fð1þ e01Þde

0
1 þ ðes

3 þ bnÞde
s
3 þ b1db1 þ ðes

3 þ bnÞdbn þ zdk1g þ sr
22fð1þ e02Þde

0
2

þ ðes
3 � bnÞde

s
3 þ b2db2 � ðes

3 � bnÞdbn þ zdk2g þ sr
12fde

0
3 þ de04 þ zðdk3 þ dk4Þ

þ ðe01 þ e02Þde
s
3 þ ðes

3 � bnÞde
0
1 þ ðes

3 þ bnÞde
0
2 � ðe01 � e02Þdbn þ b2db1 þ b1db2g dV : ð56Þ

Eq. (56) will be used in calculating the variation of the total strain energy, which, in turn, will yield
static equations, and couple the prestresses with the dynamic equations.
There are two main ways the work done by pressure can be taken into account. One modelling

approach is to consider the pressure force as a dead load. Another approach, which is taken in the
present study, is to consider that the pressure force acts normal to the deformed surface during the
vibration. Therefore, as the shell vibrates, the direction of the force changes, making it a
displacement-dependent force. This effect, called the follower action of pressure load [12], creates
the pressure stiffness. For a complete, doubly curved shell, the work done by uniform fluid
pressure as the shell deforms is the product of the pressure times the change in the volume
enclosed by the shell. Variation of the work done by the pressure p can be written as [2]

dWp ¼
Z
a2

Z
a1

p½b1du1 þ b2du2 þ ðe01 þ e02Þdw�A1A2 da1 da2: ð57Þ

Eqs. (56) and (57) can be considered as the addenda to the original expressions of the variations of
strain energy and work done used in deriving the Sanders’ shell theory [7] for a shell without
pressure. Once these quantities are added, the governing equations for a shell subjected to
pressure can be obtained using Hamilton’s principle. Details of the derivations are omitted here
for the sake of brevity. Vibration of a shell under prestress can be analyzed analogously to a
spring–mass system under the effect of gravity. In a linear analysis, we can separate the dynamic
and static parts. Let Nr

11; Nr
22; Nr

12; and Nr
21 be the initial in-plane stress resultants, also called the
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prestresses (Fig. 5). The modified initial membrane shear stress resultant ð *Nr
12Þ can be defined

similar to *N12 (Eq. (42)). Setting all the quantities related to the vibration of the shell to zero yields
the following static equations:

@ðNr
11A2Þ
@a1

þ
@ð *Nr

12A1Þ
@a2

þ *Nr
12

@A1

@a2
� Nr

22

@A2

@a1
¼ 0; ð58Þ

@ðNr
22A1Þ
@a2

þ
@ð *Nr

12A2Þ
@a1

þ *Nr
12

@A2

@a1
� Nr

11

@A1

@a2
¼ 0; ð59Þ

Nr
11

R1
þ

Nr
22

R2
¼ p: ð60Þ

The solution of these equations gives initial stresses. Subtracting the static equations from the
total equations results in the following three equations of motion:

L1 þ
@½fNr

11e
0
1 þ *Nr

12ðe
s
3 � bnÞgA2�

@a1
þ

1

2

@

@a2
½fNr

11ðe
s
3 þ bnÞ þ Nr

22ðe
s
3 � bnÞ

þ *Nr
12ðe

0
1 þ e02ÞgA1� þ

1

2
fNr

11ðe
s
3 þ bnÞ þ Nr

22ðe
s
3 � bnÞ þ *Nr

12ðe
0
1 þ e02Þg

@A1

@a2

� fNr
22e

0
2 þ *Nr

12ðe
s
3 þ bnÞg

@A2

@a1
�

A1A2

R1
ðNr

11b1 þ *Nr
12b2Þ �

1

2

@

@a2
fNr

11ðe
s
3 þ bnÞ

� Nr
22ðe

s
3 � bnÞ � *Nr

12ðe
0
1 � e02ÞgA1 þ pb1A1A2 ¼ 0; ð61Þ

L2 þ
@½fNr

22e
0
2 þ *Nr

12ðe
s
3 þ bnÞgA1�

@a2
þ

1

2

@

@a1
½fNr

11ðe
s
3 þ bnÞ þ Nr

22ðe
s
3 � bnÞ

þ *Nr
12ðe

0
1 þ e02ÞgA2� þ

1

2
fNr

11ðe
s
3 þ bnÞ þ Nr

22ðe
s
3 � bnÞ þ *Nr

12ðe
0
1 þ e02Þg

@A2

@a1

� fNr
11e

0
1 þ *Nr

12ðe
s
3 � bnÞg

@A1

@a2
�

A1A2

R2
ðNr

22b2 þ *Nr
12b1Þ þ

1

2

@

@a1
fNr

11ðe
s
3 þ bnÞ

� Nr
22ðe

s
3 � bnÞ � *Nr

12ðe
0
1 � e02ÞgA2 þ pb2A1A2 ¼ 0; ð62Þ

L3 � fNr
11e

0
1 þ *Nr

12ðe
s
3 � bnÞg

A1A2

R1
� fNr

22e
0
2 þ *Nr

12ðe
s
3 þ bnÞg

A1A2

R2
�

@

@a1

½A2ðNr
11b1 þ *Nr

12b2Þ� �
@

@a2
½A1ðNr

22b2 þ *Nr
12b1Þ� þ pðe01 þ e02ÞA1A2 ¼ 0; ð63Þ

where L1; L2; and L3 are the left sides of Eqs. (43)–(45), respectively. Another form of the above
equations of motion can be obtained by simplifying the above equations using the static
equations, Eqs. (58)–(60), and the Gauss–Codazzi conditions, Eqs. (1) and (2).

L1 þ A1A2N
r
11

1

A1

@e01
@a1

þ
g12

A1A2

@A1

@a2
�

b1
R1

� �
þ 2A1A2N

r
12

1

A2

@e01
@a2

�
g12

A1A2

@A2

@a1

� �

þ A1A2N
r
22

1

2A2

@g12
@a2

þ
ðe01 � e02Þ

AfAs

@A2

@a1
�

1

A2

@bn

@a2

� �
þ pb1A1A2 ¼ 0; ð64Þ
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L2 þ A1A2N
r
22

1

A2

@e02
@a2

þ
g12

A1A2

@A2

@a1
�

b2
R2

� �
þ 2A1A2N

r
12

1

A1

@e02
@a1

�
g12

A1A2

@A1

@a2

� �

þ A1A2N
r
11

1

2A1

@g12
@a1

þ
ðe02 � e01Þ

A1A2

@A1

@a2
þ

1

A1

@bn

@a1

� �
þ pb2A1A2 ¼ 0; ð65Þ

L3 � A1A2N
r
11

e01
R1

þ
1

A1

@b1
@a1

þ
b2

A1A2

@A1

@a2

� �
� A1A2N

r
12

1

A2

@b1
@a2

þ
1

A1

@b2
@a1

�

�
b1

A1A2

@A1

@a2
�

b2
A1A2

@A2

@a1
�

1

R1
�

1

R2

� �
bn þ

1

R1
þ

1

R2

� �
g12
2

�
� A1A2N

r
22



e02
R2

þ
1

A2

@b2
@a2

þ
b1

A1A2

@A2

@a1

� �
þ A1A2pðe01 þ e02Þ ¼ 0: ð66Þ

The above forms of the equations of motion do not contain the derivatives of the prestresses, and
were derived previously by Budiansky [2] using tensors. These equations can be solved in
conjunction with the boundary conditions presented below to obtain vibratory stresses and the
deflections from the equilibrium state. The four boundary conditions at the edge with constant a1
are as follows:

N11 þ Nr
11e11 þ *Nr

12

g12
2

� bn

� �
¼ %N11 or u1 ¼ %u1; ð67Þ

*N12 þ
3

2R2
�

1

2R1

� �
*M12 þ *Nr

12e22 þ Nr
11

g12
2

þ bn

� �
¼ %N12 þ

%M12

R2
or u2 ¼ %u2; ð68Þ

Q13 þ
1

A2

@ *M12

@a2
¼ %Q13 þ

1

A2

@ %M12

@a2
or w ¼ %w; ð69Þ

M11 ¼ %M11 or b1 ¼ %b1; ð70Þ

where the quantities with over bar are specified ones. The boundary conditions at the edge with
constant a2 can be obtained by interchanging the suffixes 1 and 2 in the above equations.

5. Approximate shell theories

First, we present approximate geometric non-linearities, which can be used in deriving different
theories following the approach suggested in Section 4. For the sake of brevity, the final equations
will not be derived in this paper. We start with Sanders’ non-linear shell theory [13], which
assumes small strains and moderately small rotations. This implies that the linear in-plane
membrane strains (e01; e

0
2; e

0
3; and e04) are much smaller than the rotations (b1; b2; and bn) in

Eqs. (39)–(41), and yields the following strain–displacement relations [13]:

es
1 ¼ e01 þ

1
2
½ðbnÞ

2 þ ðb1Þ
2�; ð71Þ

es
2 ¼ e02 þ

1
2
½ðbnÞ

2 þ ðb2Þ
2�; ð72Þ
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gs
12 ¼ e03 þ e04 þ b1b2: ð73Þ

In the above equations, the superscript s denotes the strains corresponding to Sanders’ non-linear
shell theory. Using the above definitions, one can derive the shell theory and boundary conditions
for a shell under pressure corresponding to Sanders’ non-linear shell theory. If the terms
containing bn are dropped in the above equations, we get geometric non-linearity, which was used
by Plaut et al. [5]:

ep
1 ¼ e01 þ

1
2
ðb1Þ

2; ð74Þ

ep
2 ¼ e02 þ

1
2ðb2Þ

2; ð75Þ

gp
12 ¼ e03 þ e04 þ b1b2: ð76Þ

In order to derive the non-linear theory for a shell under prestresses given by Soedel [11], all the
squared terms involving u1 and u2 are ignored when compared to w in the above equations. This
gives

ed
1 ¼

1

A1

@u1

@a1
þ

u2

A1A2

@A1

@a2
þ

w

R1
þ

1

2A2
1

@w

@a1

� �2

; ð77Þ

ed
2 ¼

1

A2

@u2

@a2
þ

u1

A1A2

@A2

@a1
þ

w

R2
þ

1

2A2
1

@w

@a1

� �2

; ð78Þ

gd
12 ¼

1

A1

@u2

@a1
�

u1

A1A2

@A1

@a2
þ

1

A2

@u1

@a2
�

u2

A1A2

@A2

@a1
þ

1

A1A2

@w

@a1

@w

@a2
: ð79Þ

The above definitions are known as Donnell’s non-linear shell theory [14]. The bending and the
torsion strains for this case are given in Eq. (33). In deriving the equations corresponding to those
by Soedel [11], one also needs to ignore the changes in definitions due to Sanders [7] as presented
in Eq. (42). Note that the original Sanders non-linear shell theory [13] was not derived for a shell
under pressure. Hence, to derive his original equations, one will have to replace all the prestresses
with the vibratory stresses, and will have to ignore the follower pressure load. Plaut et al. [5]
analyzed an inflated toroidal structure under various types of snow loads, and Saigal et al. [4] used
an approximated version of the equations of Soedel [11] to analyze a tire under internal pressure.
Plaut et al. [5] and Soedel [11] considered only the prestresses, and to derive the equations
presented by these researchers, one will have to ignore the follower pressure load. In the next
section, we present free-vibration analyses of an inflated torus using different shell theories.

6. Numerical results

In this section, we perform a free-vibration analysis of a complete (no free edges) inflated
toroidal shell of circular cross-section and free boundary condition using an accurate shell theory
(Eqs. (64)–(66)) and compare the results with those obtained using approximate shell theories.
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6.1. Free-vibration analysis using an accurate shell theory

The middle surface of the toroidal shell is generated by the revolution of a circle of radius r;
with center at a distance Rð¼ 1=kÞ from the axis of revolution (Fig. 6). The Lam!e parameters A1

and A2 and the principal radii of curvatures R1 and R2 are as follows [5]:

A1 ¼ r; A2 ¼ 1þ rk cos a1; ð80Þ

R1 ¼ r; R2 ¼ r þ
1

k cos a1
: ð81Þ

The above parameters are substituted in the static and dynamic equations so as to specialize the
equations for a toroidal shell subjected to pressure. In 1965, Liepins studied the free-vibration
analysis of an inflated torus. He solved the governing equations using a finite difference method,
and obtained the frequencies and mode shapes by a trial and error method in the Holzer fashion.
In the present work, we are using Galerkin’s method and mode shapes are given by Fourier series
along the tube of the torus and single term sine and cosine function along the circumference [15].
Inflatable structures are often made of Kaptons; and hence its properties will be used in this
analysis. The internal pressure has been taken to be 0:5 psi; as it is the desired internal pressure for
inflatable satellites [16]. Table 1 shows the data for the geometry and material of the inflatable
torus.
Since the boundary conditions of the inflated torus are taken to be free, the free-vibration

analysis should also show rigid-body motions. Rigid-body motions in a flexible structure are
caused by those deflections where the relative positions of any two particles of the structure do not
change with time. A non-trivial situation where these types of deflections are possible is when the
whole structure is under motion without the relative movement of any two points in the structure.
For a structure with all boundary conditions free, any such motion can be decomposed into three
pure translations along three perpendicular axes and three pure rotations about the same (Fig. 7).
Since the relative displacements of two points are always zero, these motions cause no strain, and
hence no restoring elastic force in the structure. This leads to a non-oscillating deflection, and
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gives rise to zero frequency. Apart from the vibratory strains, forces in a structure could be also
caused by other sources, such as gravitational force, initial stresses, pressure, etc. However, there
should be no net oscillating force acting on the structure in a rigid body motion. In the case of a
torus, the six rigid-body motion can be given by [17]:
(1) Displacement ðVZÞ parallel to the axis of symmetry:

u1ða1; a2; tÞ ¼ A cosða1Þ; u2ða1; a2; tÞ ¼ 0; wða1; a2; tÞ ¼ A sinða1Þ: ð82Þ

(2) Displacements (VX and VY ) perpendicular to the axis of symmetry:

u1ða1; a2; tÞ ¼ A sinða1Þ cosða2=RÞ; u2ða1; a2; tÞ ¼ A sinða2=RÞ;

wða1; a2; tÞ ¼ �A cosða1Þ cosða2=RÞ ð83Þ

ARTICLE IN PRESS

Table 1

Data for the geometry and material of the torus

Parameter Values

Elastic modulus ðEÞ ðN=m2Þ 2.55
 109

Wall thickness ðhÞ (m) 76.2
 10�6

The Poisson ratio ðnÞ 0.34

Density ðrÞ ðKg=m3Þ 1418

Radius of torus ðRÞ (m) 7.62

Radius of the cross-section ðrÞ (m) 1.22

Internal pressure ðpÞ ðN=m2Þ 3447.38

Fig. 7. Directions of displacements and rotations of the rigid-body modes of the inflated torus.
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u1ða1; a2; tÞ ¼ A sinða1Þ sinða2=RÞ; u2ða1; a2; tÞ ¼ �A cosða2=RÞ;

wða1; a2; tÞ ¼ �A cosða1Þ sinða2=RÞ: ð84Þ

(3) Rotation ðOZÞ about the axis of symmetry:

u1ða1; a2; tÞ ¼ 0; u2ða1; a2; tÞ ¼ AfR þ r cosða1Þg; wða1; a2; tÞ ¼ 0: ð85Þ

(4) Rotations (OX and OY ) about axes perpendicular to the axis of symmetry:

u1ða1; a2; tÞ ¼ Afr þ R cosða1Þg cosða2=RÞ; u2ða1; a2; tÞ ¼ Ar sinða1Þ sinða2=RÞ;

wða1; a2; tÞ ¼ AR sinða1Þ cosða2=RÞ ð86Þ

u1ða1; a2; tÞ ¼ Afr þ R cosða1Þg sinða2=RÞ; u2ða1; a2; tÞ ¼ �Ar sinða1Þ cosða2=RÞ;

wða1; a2; tÞ ¼ AR sinða1Þ sinða2=RÞ: ð87Þ

The six zero natural frequencies corresponding to the six rigid-body motions were obtained using
Eqs. (64)–(66). The non-rigid-body natural frequencies and mode shapes with their projections on
one plane are shown in Fig. 8. Vibration modes of an inflated torus can be divided into two main
groups: (1) symmetric modes, and (2) antisymmetric modes. These modes are defined according to
the deformation of the cross-section of the torus. For example, the cross-section deforms
symmetrically about the line passing through a1 ¼ 0 and p in a symmetric mode. Modes 1 and 3
are the out-of-plane bending modes. These modes resemble the bending modes of a free–free
beam, and they are produced by the antisymmetric modes. Modes 2 and 5 are symmetric modes.
In modes 2 and 5, the torus vibrates by forming elliptical and triangular shapes, respectively.
These modes can be termed as the in-plane bending modes. Mode 4 is an axisymmetric mode,
where the shape does not change along the torus, and mode 6 is a twisting mode. Modes 4 and 6
are of the antisymmetric type.

6.2. Effects of the follower pressure load

In this section, we evaluate the effect of the follower action of pressure. Fig. 9 compares the
natural frequencies calculated first using Eqs. (64)–(66), and then using the same equations but
without the follower pressure load terms pb1A1A2; pb2A1A2; and A1A2pðe01 þ e02Þ: It can be seen
from Fig. 9 that the difference in the first frequency from the two analysis in around 25%.
Similarly, the difference in the second frequency is around 50%. Other frequencies can be also
seen in significant differences. The effect of the follower pressure load on the mode order is shown
in Table 2. The modes in each case are arranged in the increasing order of corresponding
frequencies. A particular entry of the table denotes which mode shape from the correct theory
occupies that position. The bold numbers denote the changed positions. For example, in the case
of no follower load, the third row entry is 5. It means that if we arrange the mode shapes
calculated by discarding the follower load in the increasing order of natural frequency, the third
mode will be actually the fifth mode obtained using the correct theory. It can be seen that almost
all of the modes are in incorrect sequence. Another effect of excluding the pressure force is that
the relative cross-sectional deformation of modes becomes higher (Fig. 10).
Since the boundary condition of the torus is free, the free-vibration analysis should yield six

zero frequencies. We found that the exclusion of follower pressure load produces incorrect natural
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(a) (b) 

(d)  (c) 

(e) (f) 

Fig. 8. The first six natural frequencies and mode shapes of the inflated torus: (a) mode 1 ð6:90 HzÞ; first out-of-plane
bending mode; (b) mode 2 ð7:24 HzÞ; first in-plane bending mode; (c) mode 3 ð17:71 HzÞ; second out-of-plane bending

mode; (d) mode 4 ð17:85 HzÞ; first axisymmetric mode; (e) mode 5 ð18:55 HzÞ; second in-plane bending mode; (f) mode 6

ð24:85 HzÞ; third antisymmetric mode (twisting).
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frequencies corresponding to the rigid-body modes of rotation type (modes 4–6 in Table 3).
However, the translation-type rigid-body modes do yield zero frequencies.
As mentioned earlier, there should be no net force acting on the structure in a rigid-body

motion. A prestressed structure, such as an inflated torus, with all free boundary conditions can
remain in equilibrium with a dead pressure load (one which does not change direction) in no-
deflection condition. Under pure translations also, the same equilibrium can be maintained
because the direction of the pressure load does not change. However, once the structure is in
rotation, the dead load cannot maintain the equilibrium with the prestresses. It is because as the
structure rotates, the directions of the follower force, which always acts normal to the surface,
changes. Therefore, one needs to include follower effect in the equations of motion. Otherwise, it
produces a net force on the structure, and hence non-zero frequencies. This is why the three
translations do not cause non-zero frequencies but the three rotations do. For example, consider
the rotation about the axis of symmetry (Eq. (85)). It leads to zero strains but the following
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Fig. 9. Comparison of the natural frequencies calculated considering the follower pressure load (first bar) and

neglecting the follower pressure load (second bar).

Table 2

Comparison of mode orders with and without considering follower pressure load

Mode number With follower pressure load Without follower pressure load

1 1 2

2 2 1

3 3 5

4 4 3

5 5 7

6 6 4

7 7 8

8 8 9

9 9 6

10 10 10
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rotations:

b1 ¼ 0; b2 ¼ A cosða1Þ; wða1; a2; tÞ ¼ �A sinða1Þ: ð88Þ

The above rotations yield the following net forces due to prestresses:

f1 ¼ 0; f2 ¼ �
Apr cosða1ÞfR þ r cosða1Þg

R
; f3 ¼ 0: ð89Þ

Therefore, there appears to be a net force in a2 direction. However, if we included the follower
load, the above force is cancelled by the force Apr cosða1ÞfR þ r cosða1Þg=R generated by the
internal pressure. Therefore, the pure rotation about the axis of symmetry, given by Eq. (85),
satisfies the equilibrium equations only in the presence of follower pressure load, giving rise to a
zero frequency.
The effect of follower pressure load will depend upon the internal pressure, wall thickness, and

the elastic modulus of the inflated torus. This effect will be higher for higher internal pressure and
smaller wall thickness and lower elastic modulus (and vice versa). Therefore, it is important to
know how these parameters as a whole affect the natural frequencies. To this end, the frequencies
are plotted against a non-dimensional quantity z; called prestress parameter, defined as [1]

z ¼
pr

Eh
: ð90Þ

Fig. 11 shows the effect of the follower pressure load on the first natural frequency (non-rigid-
body type). As expected, at very low pressure, the effect of follower pressure load is small and the
two results are almost the same. Also, as z increases, the natural frequency increases. This is
because internal pressure increases the effective stiffness of the structure. Fig. 12 shows that the
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Fig. 10. Effect of the follower pressure load on the deformation of modes: (a) 17:85 Hz; mode number ¼ 6; with
follower force effect; (b) 29:50 Hz; mode number ¼ 6; without follower force effect.

Table 3

Comparison of natural frequencies of rigid-body modes

Rigid-body mode With follower pressure load Without follower pressure load

1 ðVZÞ 0 0

2 ðVX Þ 0 0

3 ðVY Þ 0 0

4 ðOZÞ 0 3.99

5 ðOX Þ 0 4.83

6 ðOY Þ 0 4.83
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rotational-type rigid-body frequencies also increase with the prestress parameter when the
follower pressure load is not considered.

6.3. Effects of approximations in geometric non-linearities

As seen earlier, consideration of geometric non-linearity is important as it couples the
prestresses with the dynamic equations of motion. We consider the following four strain–
displacement relations:
(1) Geometric non-linearity (Eqs. (39)–(41)) without any approximations related to the

magnitudes of strains and displacements in the in-plane strains.
(2) Sanders’ non-linear theory (Eqs. (71)–(73)).
(3) Geometric non-linearities used by Plaut et al. (Eqs. (74)–(76)).
(4) Donnell’s non-linear theory (Eqs. (77)–(79)).
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We keep the follower pressure load in all these analyses in order to exclusively point out the
effects of approximations in geometric non-linearity. The natural frequencies and modes shapes
calculated using the above four cases are compared in Fig. 13. The four bars of a particular mode
are arranged in the increasing order of approximation (Case (1) is most accurate and Case (4) is
the least). A noticeable point in the figure is that Case (2) gives almost the same result as obtained
using Case (1). The results from the other two theories are not so accurate. The first frequency
obtained using Case (3) is less than half of the frequency by Case (1). The differences are higher in
the lower-order frequencies. On the other hand, the first frequency corresponding to Donnell’s
non-linearity, Case (4), is more than double of that from Case (1). Other frequencies
corresponding to Case (4) are also significantly different, making it almost unusable in the
present case.
The visible effects of these approximations on the mode shapes is that the order of modes

changes. Table 4 lists the mode orders as given by different theories. We see that the change in
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Table 4

Mode order of the first 10 modes calculated using different theories

Mode number Case (1) Case (2) Case (3) Case (4)

1 1 1 1 4

2 2 2 2 1

3 3 4 3 2

4 4 3 5 3

5 5 5 4 6

6 6 6 6 8

7 7 7 7 5

8 8 8 8 10

9 9 9 9 7

10 10 10 10 9
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mode order occurs only in two locations in Cases (2) and (3), while there are several changes in
Case (4). This suggests that approximation produces incorrect order of mode shapes.
Similar to the case of no follower load, we found that approximations in the geometric non-

linearity could lead to non-zero rigid-body frequencies. Case (1) and Case (2) produce the six zero
rigid-body frequencies. The theory corresponding to Case (3) gives zero frequencies for the
translation-type rigid-body modes and nonzero complex numbers for the rotation-type rigid-body
modes. Case (4) produces rigid-body frequencies of the same order as the first non-rigid-body
frequency calculated by the same theory. The reason for non-zero rigid-body frequency is again
the unbalanced forces (caused this time by the approximation in geometric non-linearity)
(Table 5).
From the comparison of rigid-body and non-rigid-body frequencies and mode shapes, one can

infer that the rotation of the reference surface about the normal and the in-plane displacements
are too important to ignore in the geometric non-linearity for the present case.
Fig. 14 shows how the first and the second natural frequencies calculated using Cases (1), (3),

and (4) changes with the prestress parameter ðzÞ: Case (2) was not included as it always gives
frequencies close to those obtained using Case (1). As expected, all three analyses give the same
frequencies at z ¼ 0; which corresponds to no initial stresses or infinitely stiff torus. However, as z
grows, the results of Cases (3) and (4) start deviating from the result of Case (1). The same
phenomenon is noted regarding other frequencies. From Fig. 14, one can conclude that even for a
small prestress parameter, the differences in the results produced by different theories could be
significant.
The torus considered in the structure is assumed to be of uniform thickness and material

properties. Boundary conditions were also assumed to be completely free. In reality, due to
manufacturing limitations, the torus cannot be made perfectly uniform. Often, overlapping
membranes are attached using some kind of glue, which add extra mass and stiffness to the
structure. Moreover, the present study did not consider the effects of internal and external air.
Given the lightweight and the very low stiffness, the behavior of an inflatable structure becomes
quite sensitive to these boundary conditions and structural imperfections. It has been shown in the
past that the mass of air decreases the natural frequencies and increases the damping of the
structure [18,19]. For this reason, Griffith and Main [20], in their experimental study, used a
lightweight accelerometer, and took the measurement perpendicular to the gravity field in order to
minimize the mass loading effect. They found that with increase in the internal pressure, the
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Table 5

Rigid-body frequency calculated using different theories

Rigid-body mode Frequency (Hz)

Case (1)

Frequency (Hz)

Case (2)

Frequency (Hz)

Case (3)

Frequency (Hz)

Case (4)

1 ðVZÞ 0 0 1 25.74

2 ðVX Þ 0 0 2 18.26

3 ðVY Þ 0 0 3 18.26

4 ðOZÞ 0 0 3.50 i 0

5 ðOX Þ 0 0 3.45 i 25.04

6 ðOY Þ 0 0 3.45 i 25.04
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natural frequency and structural damping increase, and the viscous damping decreases. Dynamic
testing results in vacuum and ambient condition were compared by Slade et al. [21]. They found
significant differences in the modal damping and the mass of the air contained by the inflatable
structure in the two conditions. Attempts have been also made in the past to model these effects
analytically. Leigh and Tinker [22] used MSC/NASTRAN to model the flanges and glues, and
found their effects on natural frequencies and mode shapes quite significant. A short discussion on
the mass of internal air in an inflated structure can be found in Ref. [23]. However, analytical
work in this area is far from complete.

7. Conclusions

The main objective of this paper was to show the effects of approximations in non-linear strain–
displacement relations, and exclusion of the follower actions of pressure force on the vibration
analysis of an inflated structure. We followed Sanders’ shell theory, which was originally given for
a shell without pressure load. The necessary modifications for a shell subjected to a pressure load
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were derived. The mode shapes and natural frequencies for both rigid-body and non-rigid-body
modes were presented. We discussed the effects of (1) follower pressure force and (2) geometric
non-linearity, separately. For the first case, we compared the natural frequencies with and without
considering the follower force due to pressure. It was observed that the accurate theory gives
exactly zero frequencies for the six rigid-body modes, which is consistent with the fact that the
torus has free boundary conditions. We found that rotation-type rigid-body frequencies are non-
zero when the follower force is not included. The non-rigid-body frequencies were also found be
significantly different from the correct ones. For the second case, we considered four different
types of geometric non-linearity and compared the natural frequencies and mode shapes. We
found that Sanders’ non-linear theory performs almost the same as the theory that does not make
any assumption regarding the magnitudes of strains and rotation. It was found that the other two
approximations lead to non-zero rigid-body frequencies. Also, they differ significantly from the
correct results in the non-rigid-body frequencies and mode shapes. It was found that exclusion of
rotations in the geometric non-linearity produces more severe effects. From these analyses, it is
evident that accuracy in geometric non-linearity as well as the follower action of pressure force is
important to consider for acceptable vibration analysis results of an inflated structure.
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